函数教案5篇

时间:
Gourmand
分享
下载本文

具有启发性的教案能够激发学生的学习兴趣,我们写的教案要考虑到学生的学习能力和背景,制定合适的教学计划,发发总结网小编今天就为您带来了函数教案5篇,相信一定会对你有所帮助。

函数教案5篇

函数教案篇1

二次函数的应用

教学设计思想

本节主要研究的是与二次函数有关的实际问题,重点是实际应用题,在教学过程中让学生运用二次函数的知识分析问题、解决问题,在运用中体会二次函数的实际意义。二次函数与一元二次方程、一元二次不等式有密切联系,在学习过程中应把二次函数与之有关知识联系起来,融会贯通,使学生的认识更加深刻。另外,在利用图像法解方程时,图像应画得准确一些,使求得的解更准确,在求解过程中体会数形结合的思想。

教学目标:

1.知识与技能

会运用二次函数计其图像的知识解决现实生活中的实际问题。

2.过程与方法

通过本节内容的学习,提高自主探索、团结合作的能力,在运用知识解决问题中体会二次函数的应用意义及数学转化思想。

3.情感、态度与价值观

通过学生之间的讨论、交流和探索,建立合作意识和提高探索能力,激发学习的兴趣和欲望。

教学重点:

解决与二次函数有关的实际应用题。

教学难点:

二次函数的应用。

教学媒体:

幻灯片,计算器。

教学安排:

3课时。

教学方法:

小组讨论,探究式。

教学过程:

第一课时:

Ⅰ.情景导入:

师:由二次函数的一般形式y= (a0),你会有什么联想?

生:老师,我想到了一元二次方程的一般形式 (a0)。

师:不错,正因为如此,有时我们就将二次函数的有关问题转化为一元二次方程的问题来解决。

现在大家来做下面这两道题:(幻灯片显示)

1.解方程 。

2.画出二次函数y= 的图像。

教师找两个学生解答,作为板书。

Ⅱ.新课讲授

同学们思考下面的问题,可以共同讨论:

1.二次函数y= 的图像与x轴交点的横坐标是什么?它与方程 的根有什么关系?

2.如果方程 (a0)有实数根,那么它的根和二次函数y= 的图像与x轴交点的横坐标有什么关系?

生甲:老师,由画出的图像可以看出与x轴交点的横坐标是-1、2;方程的两个根是-1、2,我们发现方程的两个解正好是图像与x轴交点的横坐标。

生乙:我们经过讨论,认为如果方程 (a0)有实数根,那么它的根等于二次函数y= 的图像与x轴交点的横坐标。

师:说的很好;

教师总结:一般地,如果二次函数y= 的图像与x轴相交,那么交点的横坐标就是一元二次方程 =0的根。

师:我们知道方程的两个解正好是二次函数图像与x轴的两个交点的横坐标,那么二次函数图像与x轴的交点问题可以转化为一元二次方程的根的问题,我们共同研究下面问题。

[学法]:通过实例,体会二次函数与一元二次方程的关系,解一元二次方程实质上就是求二次函数为0的自变量x的取值,反映在图像上就是求抛物线与x轴交点的横坐标。

问题:已知二次函数y= 。

(1)观察这个函数的图像(图34-9),一元二次方程 =0的两个根分别在哪两个整数之间?

(2)①由在0至1范围内的x值所对应的y值(见下表),你能说出一元二次方程 =0精确到十分位的正根吗?

x 0 0.1 0.2[ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y -1 -0.89 -0.76 -0.61 -0.44 -0.25 -0.04 -0.19 0.44 0.71 1

②由在0.6至0.7范围内的x值所对应的y值(见下表),你能说出一元二次方程 =0精确到百分位的正根吗?

x 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70

y -0.040 -0.018 0.004 0.027 0.050 0.073 0.096 0.119 0.142 0.166 0.190

(3)请仿照上面的方法,求出一元二次方程 =0的另一个精确到十分位的根。

(4)请利用一元二次方程的求根公式解方程 =0,并检验上面求出的近似解。

第一问很简单,可以请一名同学来回答这个问题。

生:一个根在(-2,-1)之间,另一个在(0,1)之间;根据上面我们得出的结论。

师:回答的很正确;我们知道图像与x轴交点的横坐标就是方程的根,所以我们可以通过观看图象就能说出方程的两个根。现在我们共同解答第(2)问。

教师分析:我们知道方程的一个根在(0,1)之间,那么我们观看(0,1)这个区间的图像,y值是随着x值的增大而不断增大的,y值也是从负数过渡到正数,而当y=0时所对应的x值就是方程的根。现在我们要求的是方程的近似解,那么同学们想一想,答案是什么呢?

生:通过列表可以看出,在(0.6,0.7)范围内,y值有-0.04至0.19,如果方程精确到十分位的正根,x应该是0.6。

类似的,我们得出方程精确到百分位的正根是0.62。

对于第三问,教师可以让学生自己动手解答,教师在下面巡视,观察其中发现的问题。

最后师生共同利用求根公式,验证求出的近似解。

教师总结:我们发现,当二次函数 (a0)的图像与x轴有交点时,根据图像与x轴的交点,就可以确定一元二次方程 的根在哪两个连续整数之间。为了得到更精确的近似解,对在这两个连续整数之间的x的值进行细分,并求出相应得y值,列出表格,这样就可以得到一元二次方程 所要求的精确度的近似解。

Ⅲ.练习

已知一个矩形的长比宽多3m,面积为6 。求这个矩形的长(精确到十分位)。

板书设计:

二次函数的应用(1)

一、导入 总结:

二、新课讲授 三、练习

第二课时:

师:在我们的实际生活中你还遇到过哪些运用二次函数的实例?

生:老师,我见过好多。如周长固定时长方形的面积与它的长之间的关系:圆的面积与它的直径之间的关系等。

师:好,看这样一个问题你能否解决:

活动1:如图34-10,张伯伯准备利用现有的一面墙和40m长的篱笆,把墙外的空地围成四个相连且面积相等的矩形养兔场。

回答下面的问题:

1.设每个小矩形一边的长为xm,试用x表示小矩形的另一边的长。

2.设四个小矩形的总面积为y ,请写出用x表示y的函数表达式。

3.你能利用公式求出所得函数的图像的顶点坐标,并说出y的最大值吗?

4.你能画出这个函数的图像,并借助图像说出y的最大值吗?

学生思考,并小组讨论。

解:已知周长为40m,一边长为xm,看图知,另一边长为 m。

由面积公式得 y= (x )

化简得 y=

代入顶点坐标公式,得顶点坐标x=4,y=5。y的最大值为5。

画函数图像:

通过图像,我们知道y的最大值为5。

师:通过上面这个例题,我们能总结出几种求y的最值得方法呢?

生:两种;一种是画函数图像,观察最高(低)点,可以得到函数的最值;另外一种可以利用顶点坐标公式,直接计算最值。

师:这位同学回答的很好,看来同学们是都理解了,也知道如何求函数的最值。

总结:由此可以看出,在利用二次函数的图像和性质解决实际问题时,常常需要根据条件建立二次函数的表达式,在求最大(或最小)值时,可以采取如下的方法:

(1)画出函数的图像,观察图像的最高(或最低)点,就可以得到函数的最大(或最小)值。

(2)依照二次函数的性质,判断该二次函数的开口方向,进而确定它有最大值还是最小值;再利用顶点坐标公式,直接计算出函数的最大(或最小)值。

师:现在利用我们前面所学的知识,解决实际问题。

活动2:如图34-11,已知ab=2,c是ab上一点,四边形acde和四边形cbfg,都是正方形,设bc=x,

(1)ac=______;

(2)设正方形acde和四边形cbfg的总面积为s,用x表示s的函数表达式为s=_____.

(3)总面积s有最大值还是最小值?这个最大值或最小值是多少?

(4)总面积s取最大值或最小值时,点c在ab的什么位置?

教师讲解:二次函数 进行配方为y= ,当a0时,抛物线开口向上,此时当x= 时, ;当a0时,抛物线开口向下,此时当x= 时, 。对于本题来说,自变量x的最值范围受实际条件的制约,应为02。此时y相应的就有最大值和最小值了。通过画出图像,可以清楚地看到y的最大值和最小值以及此时x的取值情况。在作图像时一定要准确认真,同时还要考虑到x的取值范围。

解答过程(板书)

解:(1)当bc=x时,ac=2-x(02)。

(2)s△cde= ,s△bfg= ,

因此,s= + =2 -4x+4=2 +2,

画出函数s= +2(02)的图像,如图34-4-3。

(3)由图像可知:当x=1时, ;当x=0或x=2时, 。

(4)当x=1时,c点恰好在ab的中点上。

当x=0时,c点恰好在b处。

当x=2时,c点恰好在a处。

[教法]:在利用函数求极值问题,一定要考虑本题的实际意义,弄明白自变量的取值范围。在画图像时,在自变量允许取得范围内画。

练习:

如图,正方形abcd的边长为4,p是边bc上一点,qpap,并且交dc与点q。

(1)rt△abp与rt△pcq相似吗?为什么?

(2)当点p在什么位置时,rt△adq的面积最小?最小面积是多少?

小结:利用二次函数的增减性,结合自变量的取值范围,则可求某些实际问题中的极值,求极值时可把 配方为y= 的形式。

板书设计:

二次函数的应用(2)

活动1: 总结方法:

活动2: 练习:

小结:

第三课时:

我们这部分学习的是二次函数的应用,在解决实际问题时,常常需要把二次函数问题转化为方程的问题。

师:在日常生活中,有哪些量之间的关系是二次函数关系?大家观看下面的图片。

(幻灯片显示交通事故、紧急刹车)

师:你知道两辆车在行驶时为什么要保持一定的距离吗?

学生思考,讨论。

师:汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,这段距离叫做刹车距离。刹车距离是分析、处理道路交通事故的一个重要原因。

请看下面一个道路交通事故案例:

甲、乙两车在限速为40km/h的湿滑弯道上相向而行,待望见对方。同时刹车时已经晚了,两车还是相撞了。事后经现场勘查,测得甲车的刹车距离是12m,乙车的刹车距离超过10m,但小于12m。根据有关资料,在这样的湿滑路面上,甲车的刹车距离s甲(m)与车速x(km/h)之间的关系为s甲=0.1x+0.01x2,乙车的刹车距离s乙(m)与车速x(km/h)之间的关系为s乙= 。

教师提问:

1.你知道甲车刹车前的行驶速度吗?甲车是否违章超速?

2.你知道乙车刹车前的行驶速度在什么范围内吗?乙车是否违章超速?

学生思考!教师引导。

对于二次函数s甲=0.1x+0.01x2:

(1)当s甲=12时,我们得到一元二次方程0.1x+0.01x2=12。请谈谈这个一元二次方程这个一元二次方程的实际意义。

(2)当s甲=11时,不经过计算,你能说明两车相撞的主要责任者是谁吗?

(3)由乙车的刹车距离比甲车的刹车距离短,就一定能说明事故责任者是甲车吗?为什么?

生甲:我们能知道甲车刹车前的行驶速度,知道甲车的刹车距离,又知道刹车距离与车速的关系式,所以车速很容易求出,求得x=30km,小于限速40km/h,故甲车没有违章超速。

生乙:同样,知道乙车刹车前的行驶速度,知道乙车的刹车距离的取值范围,又知道刹车距离与车速的关系式,求得x在40km/h与48km/h(不包含40km/h)之间。可见乙车违章超速了。

同学们,从这个事例当中我们可以体会到,如果二次函数y= (a0)的某一函数值y=m。就可利用一元二次方程 =m,确定它所对应得x值,这样,就把二次函数与一元二次方程紧密地联系起来了。

下面看下面的这道例题:

当路况良好时,在干燥的路面上,汽车的刹车距离s与车速v之间的关系如下表所示:

v/(km/h) 40 60 80 100 120

s/m 2 4.2 7.2 11 15.6

(1)在平面直角坐标系中描出每对(v,s)所对应的点,并用光滑的曲线顺次连结各点。

(2)利用图像验证刹车距离s(m)与车速v(km/h)是否有如下关系:

(3)求当s=9m时的车速v。

学生思考,亲自动手,提高学生自主学习的能力。

教师提问,学生回答正确答案,教师再进行讲解。

课上练习:

某产品的成本是20元/件,在试销阶段,当产品的售价为x元/件时,日销量为(200-x)件。

(1)写出用售价x(元/件)表示每日的销售利润y(元)的表达式。

(2)当日销量利润是1500元时,产品的售价是多少?日销量是多少件?

(3)当售价定为多少时,日销量利润最大?最大日销量利润是多少?

课堂小结:本节课主要是利用函数求极值的问题,解决此类问题时,一定要考虑到本题的实际意义,弄明白自变量的取值范围。在画图像时,在自变量允许取的范围内画。

板书设计:

二次函数的应用(3)

一、案例 二、例题

分析: 练习:

总结:

数学网

函数教案篇2

一、教学内容:

本节内容是人教版教材八年级上册,第十四章第2节乘法公式的第二课时——完全平方公式。

二、教材分析:

完全平方公式是乘法公式的重要组成部分,也是乘法运算知识的升华,它是在学生学习整式乘法后,对多项式乘法中出现的一种特殊的算式的总结,体现了从一般到特殊的思想方法。完全平方公式是学生后续学好因式分解、分式运算的必备知识,它还是配方法的基本模式,为以后学习一元二次方程、函数等知识奠定了基础,所以说完全平方公式属于代数学的基础地位。

本节课内容是在学生掌握了平方差公式的基础上,研究完全平方公式的推导和应用,公式的发现与验证为学生体验规律探索提供了一种较好的模式,培养学生逐步形成严密的逻辑推理能力。完全平方公式的学习对简化某些代数式的运算,培养学生的求简意识很有帮助。使学生了解到完全平方公式是有力的数学工具。

重点:掌握完全平方公式,会运用公式进行简单的计算。

难点:理解公式中的字母含义,即对公式中字母a、b的理解与正确应用。

三、教学目标

(1)经历探索完全平方公式的推导过程,掌握完全平方公式,并能正确运用公式进行简单计算。

(2)进一步发展学生的符号感和推理能力,了解公式的几何背景,感受数与形之间的联系,学会独立思考。

(3)通过推导完全平方公式及分析结构特征,培养学生观察、分析、归纳的.能力,学会与他人合作交流,体验解决问题的多样性。

(4)体验完全平方公式可以简化运算从而激发学生的学习兴趣;在自主探究、合作交流的学习过程中获得体验成功的喜悦,增强学习数学的自信心。

四、学情分析与教法学法

学情分析:课程标准提出数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,本节课就是在前面的学习中,学生已经掌握了整式的乘法运算及平方差公式的基础上开展的,具备了初步的总结归纳能力。另外,14岁的中学生充满了好奇心,有较强的求知欲、创造欲、表现欲,所以只有能调动学生的学习热情,本节内容才较易掌握。但八年级学生的探究能力有差异,逻辑推理能力也有待于提高,而且易粗心马虎,这都是本节课要注意的问题。

学法:以自主探究为主要学习方式,使学生在独立思考、归纳总结、合作交流

总结反思中获得数学知识与技能。

教法:以启发引导式为主要教学方式,在引导探究、归纳总结、典例精析、合作交流的教学过程中,教师做好组织者和引导者,让学生在老师的指导下处于主动探究的学习状态。

五、教学过程

(略)

六、教学评价

在教学中,教师在精心设置教学环节中,做到以学生为主体,做好组织者和引导者,全面评价学生在知识技能、数学思考、问题解决和情感态度等方面的表现。教师通过情境引入、提供问题引导学生从已有的知识为出发点,自主探究,发现问题,深入思考。学生解决问题要以独立思考为主,当遇到困难时学会求助交流,教师也要给学生思考交流的时间,让学生经历得出结论的过程,培养发现问题解决问题的能力。

在整个学习过程中,通过对学生参与自主探究的程度、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生的想法或结论给予鼓励评价。

函数教案篇3

一、教学目标:

知识与技能:理解指数函数的概念,能够判断指数函数。

过程与方法:通过观察,分析、归纳、总结、自主建构指数函数的概念。领会从特殊到一般的数学思想方法,从而培养学生发现、分析、解决问题的能力。

情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

二、教学重点、难点:

教学重点:指数函数的概念,判断指数函数。教学难点:对底数的分类。

三、学情分析:

学生已经学习了函数的知识,指数函数是函数知识中重要的一部分内容,学生若能将其与学过的正比例函数、一次函数、二次函数进行对比着去理解指数函数的概念、性质、图象,则一定能从中发现指数函数的本质,所以对已经熟悉掌握函数的学生来说,学习本课并不是太难。学生通过对高中数学中函数的学习,对解决一些数学问题有一定的能力。通过教师启发式引导,学生自主探究完成本节课的学习。高一学生的认知水平从形象向抽象、从特殊向一般过渡,思维能力的提高是一个转折期,但是,学生的自主意识强,有主动学习的愿望与能力。有好奇心、好胜心、进取心,富有激情、思维活跃。

四、教学内容分析:

本节课是《普通高中课程标准实验教科书·数学(1)》(人教b版)第二章第一节第二课()《指数函数及其性质》。根据我所任教的学生的实际情况,我将《指数函数及其性质》划分为三节课(探究指数函数的概念,图象及其性质,指数函数及其性质的应用),这是第一节课“探究指数函数的概念”。指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。函数及其图象在高中数学中占有很重要的位置。如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,主要是让学生学会如何去发现研究心的函数,为后面学习对数函数、幂函数做出铺垫。

五、教学过程:

(一)创设情景

问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂x次后,得到的细胞分裂的个数y与x之间,构成一个函数关系,能写出x与y之间的函数关系式吗?

问题2:《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭。”请你写出截取x次后,木棰剩余量y关于x的函数关系式?

(二)导入新课

引导学生观察,两个函数中,有什么共同特征?

(三)新课讲授指数函数的定义

(四)巩固与练习例题

(五)课堂小结

(六)布置作业

函数教案篇4

教学目标:

(1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法;

(2)培养学生的归纳、总结能力;

(3)通过两圆外公切线长的求法向学生渗透“转化”思想。

教学重点:

理解两圆相切长等有关概念,两圆外公切线的求法。

教学难点:

两圆外公切线和两圆外公切线长学生理解的不透,容易混淆。

教学活动设计

(一)实际问题(引入)

很多机器上的传动带与主动轮、从动轮之间的位置关系,给我们以一条直线和两个同时相切的形象。(这里是一种简单的数学建模,了解数学产生与实践)

两圆的公切线概念

1、概念:

教师引导学生自学。给出两圆的外公切线、内公切线以及公切线长的定义:

和两圆都相切的直线,叫做两圆的公切线。

(1)外公切线:两个圆在公切线的同旁时,这样的公切线叫做外公切线。

(2)内公切线:两个圆在公切线的两旁时,这样的公切线叫做内公切线。

(3)公切线的长:公切线上两个切点的距离叫做公切线的长。

2、理解概念:

(1)公切线的长与切线的长有何区别与联系?

(2)公切线的长与公切线又有何区别与联系?

(1)公切线的长与切线的长的概念有类似的地方,即都是线段的长。但公切线的长是对两个圆来说的,且这条线段是以两切点为端点;切线长是对一个圆来说的,且这条线段的一个端点是切点,另一个端点是圆外一点。

(2)公切线是直线,而公切线的长是两切点问线段的长,前者不能度量,后者可以度量。

(三)两圆的位置与公切线条数的关系

组织学生观察、概念、概括,培养学生的学习能力。添写教材p143练习第2题表。

(四)应用、反思、总结

例1 、已知:⊙o 1 、⊙o 2的半径分别为2cm和7cm,圆心距o 1 o 2 =13cm,ab是⊙o 1 、⊙o 2的外公切线,切点分别是a、b。求:公切线的长ab。

分析:首先想到切线性质,故连结o 1 a、o 2 b,得直角梯形ao 1 o 2 b。一般要把它分解成一个直角三角形和一个矩形,再用其性质。(组织学生分析,教师点拨,规范步骤)

解:连结o 1 a、o 2 b,作o 1 a⊥ab,o 2 b⊥ab。

过o 1作o 1 c⊥o 2 b,垂足为c,则四边形o 1 abc为矩形,

于是有

o 1 c⊥c o 2,o 1 c= ab,o 1 a=cb。

在rt△o 2 co 1和。

o 1 o 2 =13,o 2 c= o 2 b- o 1 a=5

ab= o 1 c= (cm)。

反思:(1)“转化”思想,构造三角形;(2)初步掌握添加辅助线的方法。

例2* 、如图,已知⊙o 1 、⊙o 2外切于p,直线ab为两圆的公切线,a、b为切点,若pa=8cm,pb=6cm,求切线ab的长。

分析:因为线段ab是△apb的一条边,在△apb中,已知pa和pb的长,只需先证明△pab是直角三角形,然后再根据勾股定理,使问题得解。证△pab是直角三角形,只需证△apb中有一个角是90°(或证得有两角的和是90°),这就需要沟通角的关系,故过p作两圆的`公切线cd如图,因为ab是两圆的公切线,所以∠cpb=∠abp,∠cpa=∠bap。因为∠bap+∠cpa+∠cpb+∠abp=180°,所以2∠cpa+2∠cpb=180°,所以∠cpa+∠cpb=90°,即∠apb=90°,故△apb是直角三角形,此题得解。

解:过点p作两圆的公切线cd

∵ ab是⊙o 1和⊙o 2的切线,a、b为切点

∴∠cpa=∠bap∠cpb=∠abp

又∵∠bap+∠cpa+∠cpb+∠abp=180°

∴ 2∠cpa+2∠cpb=180°

∴∠cpa+∠cpb=90°即∠apb=90°

在rt△apb中,ab 2 =ap 2 +bp 2

说明:两圆相切时,常过切点作两圆的公切线,沟通两圆中的角的关系。

(五)巩固练习

1、当两圆外离时,外公切线、圆心距、两半径之差一定组成()

(a)直角三角形(b)等腰三角形(c)等边三角形(d)以上答案都不对。

此题考察外公切线与外公切线长之间的差别,答案(d)

2、外公切线是指

(a)和两圆都祖切的直线(b)两切点间的距离

(c)两圆在公切线两旁时的公切线(d)两圆在公切线同旁时的公切线

直接运用外公切线的定义判断。答案:(d)

3、教材p141练习(略)

(六)小结(组织学生进行)

知识:两圆的公切线、外公切线、内公切线及公切线的长概念;

能力:归纳、概括能力和求外公切线长的能力;

思想:“转化”思想。

(七)作业:p151习题10,11。

函数教案篇5

一、学习目标:

1.经历探索平方差公式的过程。

2.会推导平方差公式,并能运用公式进行简单的运算。

二、重点难点

重点:平方差公式的推导和应用;

难点:理解平方差公式的结构特征,灵活应用平方差公式。

三、合作学习

你能用简便方法计算下列各题吗?

(1)2001×1999(2)998×1002

导入新课:计算下列多项式的积.

(1)(x+1)(x—1);

(2)(m+2)(m—2)

(3)(2x+1)(2x—1);

(4)(x+5y)(x—5y)。

结论:两个数的和与这两个数的差的'积,等于这两个数的平方差。

即:(a+b)(a—b)=a2—b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x—2);

(2)(b+2a)(2a—b);

(3)(—x+2y)(—x—2y)。

例2:计算:

(1)102×98;

(2)(y+2)(y—2)—(y—1)(y+5)。

随堂练习

计算:

(1)(a+b)(—b+a);

(2)(—a—b)(a—b);

(3)(3a+2b)(3a—2b);

(4)(a5—b2)(a5+b2);

(5)(a+2b+2c)(a+2b—2c);

(6)(a—b)(a+b)(a2+b2)。

五、小结

(a+b)(a—b)=a2—b2

函数教案5篇相关文章:

换牙齿教案5篇

蔬菜健康教案5篇

元旦活动教案5篇

对外汉语教案5篇

高中教案5篇

水乡歌教案5篇

中班小鸡教案5篇

科学空气教案5篇

人教教案5篇

感恩主题教案5篇

函数教案5篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
99730