有理数的加法的教案6篇

时间:
Brave
分享
下载本文

基于课标的教案编写,确保教学不偏离国家的质量要求,在教案中,可以加入对学生表现的个性化反馈,下面是发发总结网小编为您分享的有理数的加法的教案6篇,感谢您的参阅。

有理数的加法的教案6篇

有理数的加法的教案篇1

学习目标:

1.理解有理数加法意义

2.掌握有 理数加法法则,会正确进行有理数加法运算

3.经历探究有理数有理数加法法则过程,学会与他人交流合作

学习重点:和 的符号的确定

学习难点:异号两数相加的法则

学法指导:

在探讨有理数的加法法则问题时,利用物体在同一直线上两次运动的过程,理解有理数运算法则。先仔细观察式子的特点,找到合理的运算步骤,使加法运算简便。

学习过程

(一)课前学习导引:

1. 如果向东走5米记作+5米,那么向西走3米记作

2. 比较 大小:2 -3,-5 - 7,4

3. 已知a=-5,b=+ 3, 则︱a ︳+︱ b︱=

(二)课堂学习导引

正有理数及0的加法运算,小学已经学过,然而实 际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它 们的和叫做 净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是

(1)红队的净胜球数为 4+(-2) ,

(2)蓝队的净胜球数为 1+(-1) 。

这里用到正数和负数的加法。那么,怎样计算4+(-2),1+(-1)的结果呢?

现在让我们借助数轴来讨论有理数的加法:某人从一点出 发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少?规定向东为正,向西为负,请同学们用数学式子表示

①先向东走了5米 ,再向东走3米 ,结果怎样?可以 表示为

②先向西走了5米,再向西走了3米,结果如何?可以表示为:

③先向东走了5米,再向西走了3米,结果呢?可以表示为:

④先向西走了5米,再向东走了3米,结果呢?可以表示为:

⑤先向东走了5米,再向西走了5米,结果呢?可以表示为:

⑥先向西走5米,再向东走5米,结果呢?可以表示为:

从以上几个算式中总结有理数加法法则:

(1)、同号的两数相加,取 的符号,并把 相加.

(2).绝对值不相等的异号两数相加, 取 的加数 的 符号, 并用较大的绝对值 较小的绝对值. 互为相反数的 两个数相加得 .

(3)、一个数同0相加,仍得 。

例1 计算(能完成吗,先自己动动手吧!)

(-3)+( -9) (2)(-4.7)+3.9

例2 足球循环赛中,

红队胜黄队4: 1,黄队胜蓝队1 :0,蓝队胜红队1: 0,计算 各队的 净胜球数。

解:每个队的进球总数记为正数,失球总数记为负数,这 两数的和为这队的净胜球数。

三场比赛中,

红队共进4球,失2球,净胜球数为(+4)+(2)=+(42 )= ;

黄队共进2球,失4球,净胜球数为(+2)+(4)= (4

蓝队共进( )球,失( )球, 净胜球数为 = 。

(三)课堂检测导引:

(1)(-3)+(-5)= ; (2)3+(-5)= ;

(3)5+(-3)= ; (4)7+(-7)= ;

(5)8+(-1)= ; (6)(-8)+1 = ;

(7)(-6)+0 = ; (8)0+(-2) = ;

(四)课堂学习小结

1.本节课中你学到了什么知识?

2.你觉得有理数加法比较难掌握的是哪里?

(五)学后拓延导引

1.计算:

(1)(-13)+(-18); (2)20+(-14);

(3)1.7 + 2.8 ; (4)2.3 + (-3.1);

(5) (- )+(- ); (6)1 +(-1.5 );

(7)(-3.04)+ 6 ; (8) +(- ).

2.判断题:

(1)两个负数的和一定是负数; ( )

(2)绝对值相等的两个数的和等于零; ( )

(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数; ( )

(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数. ( )

3.当a = -1.6,b = 2.4时,求a+b和a+(-b)的值.

有理数的加法的教案篇2

教学目标:

1. 知识与技能:使学生理解加减法统一成加法的意义,能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,

2. 过程与方法:经历加减法统一成加法的过程,体会加法的运算律在运算中的应用

3. 情感、态度与价值观:渗透用转化的思想看问题以及解决问题,鼓励学生依据法则简化运算

教学重点:能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,

教学难点:准确、熟练地进行加减混合运算

教学过程

一、课前预习

1、有理数的'加法法则是什么? 2、有理数的减法法则是什么? 3、有理数的加法有什么运算律?具体内容是什么? 4、计算下列各题 (1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12

二、自主探索

根据有理数减法法则,有理数的加减混合运算可以统一为加法运算

例1、计算 (1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ ) 解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)---------------------------统一为加法 = 26+(-42)---------------------------------------运用运算律 =-16 (2) (3)(4) (5)

算式(-6)-(-13)+(-5)-(+3)+(+6)是有理数的加减混合运算,我们还可以按下列步骤进行计算: 解:(-6)-(-13)+(-5)-(+3)+(+6)

=(-6)+(+13)+(-5)+(-3)+(+6)------------统一加号 =-6+13-5-3+6----------------------------------------省略加号 =-6-5-3+13+6-----------------------------------------运用运算律=-14+19=5 说明: 省略加号的形式-6+13-5-3+6 表示-6,+13,-5 ,-3,+6这五个数的和。

例2.计算:

(1) -3-5+4 (2)-26+43-24+13-46

解:(1) (2)

例4、若a=-2,b=3,c=-4,求值

(1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c

解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 ---------- [ 数据代入时,注意括号的运用]

(2) (3)(4)

例5、在伊拉克的战争中,谋生化小组沿东西方向路进行检查, 约定向东为正,某天从a地到b地结束时行走记录为(单位:km)

+15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5 问:(1)b地在a地何方,相距多少千米?

(2)这小组这一天共走了多少千米

三、学习小结

这节课你学会了哪几种运算?

四、随堂练习

a类

1、计算: (1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3)

(3)(+ )-(- )+(- )-(+ ) (4) -7.52+ -1.48

(5)21-12+33+12-67 (6)-3.2+5.8-8.6+12

2 计算

(1) 1+2-3-4+5+6-7-8++97+98-99-100

(2) 66-12+11.3-7.4+8.1-2.5

(6)-2.7-[3-(-0.6+1.3)]

b类

3. 计算 (1) + + ++ (2) + + ++

有理数的加法的教案篇3

有理数的加法

教学目标

1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;

2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;

3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;

4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;

5.本节课通过行程问题说明有理数的加法法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。

教学建议

(一)重点、难点分析

本节教学的重点是依据有理数的加法法则熟练进行有理数的加法运算。难点是有理数的加法法则的理解。

(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。

(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。

(3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。

(二)知识结构

(三)教法建议

1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。

2.有理数的加法法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。

3.应强调加法交换律“a+b=b+a”中字母a、b的任意性。

4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。

5.可以给出一些类似“两数之和必大于任何一个加数”的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。

6.在探讨导出有理数的加法法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。

有理数的加法的教案篇4

教学目标:

1.知识与技能

掌握加法法则,体会加法法则的意义。

2.过程与方法

通过经历有理数加法运算的发生过程,体验数的运算探索过程,感悟有理数加法运算的技巧及运算规律。

通过运算归纳出技巧,感悟绝对值不相等的异号两数相加的技巧,突破本节内容中的难点问题。

3.情感、态度与价值观:

养成积极探索、不断追求真知的品格。

教学重点和难点:

重点:有理数加法法则;

难点:异号两数相加的法则。

教学安排:

第1课时。

教学过程:

一、师生共同研究有理数加法法则

我们已经熟悉正数的.加法运算,然而实际问题中做加法运算的数有可能超出正数范围。

例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。掌前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球数为 4+(-2),黄队的净胜球数为1+(-1)。

这里用到正数与负数的加法。学生考虑一下,怎么计算 4+(-2)?

师:下面我们可以借助数轴来讨论有理数的加法。

一个物体作左右方向运动,我们规定向左为负,向右为正。

① 两次运动后物体从起点向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?

有理数的加法的教案篇5

【教学目标】

1.进一步理解有理数加法的实际意义;

2.经历探索有理数加法法则的过程,理解有理数加法法则;

3.感受数学模型的思想;

4.养成认真计算的习惯.

?对话探索设计】

〖探索1

1.第一天赢利,第二天还赢利,两天合起来算,是赢利还是亏本?

2.第一天亏本,第二天还是亏本,两天合起来算,是赢利还是亏本?

3.一个物体作左右方向的运动,规定向右为正.如果物体先向左运动5m,再向左运动3m, 那么两次运动后总的结果是什么?

假设原点为运动起点,用数轴检验你的答案.

〖法则理解

有理数加法法则第1条是:同号两数相加,取___________,并把绝对值_________.

这条法则包括两种情况:

(1)两个正数相加,显然取正号,并把绝对值相加,例(+3)+(+5)=+8;

(2)两个负数相加,取_____号,并把______相加.例如(-3)+(-5) = -(3+5) = -8.答案-8之所以取-号,是因为______________,8是由_____的绝对值和______的绝对值相______而得.

〖练习

1.上午6时的气温是-5℃,下午5时的气温比上午6时下降3℃, 下午5时的气温是多少?

2.第一场比赛红队胜黄队5:2,第二场比赛蓝队胜黄队3:1, 两场比赛黄队净胜几个球?

3.第一天向北走-30km,第二天又向北走-40km,两天一共向北走多少km?

4.仿照(-3)+(-5) = -(3+5)= -8的格式解答:

(1)-10+(-30)=

(2)(-100)+(-200) =

(3)(-188)+(-309)=

〖探索2

1.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?如果第二天亏本120元呢?

2.第一天赢利,第二天亏本,两天合起来算,是赢利还是亏本?

3.正数和负数相加,结果是正数还是负数?

〖法则理解

有理数加法法则第2条的前半部分是:绝对值不相等的异号两数相加,取_________________的符号,并用_______________减去_________________.

例如(+6)+(-2) = +(6-2) = +4.答案+4之所以取+号,是因为两个加数(+6与-2)中________的绝对值较大;答案+4的绝对值4是由加数中较大的绝对值______减去较小的绝对值____得到.

又例,计算(-8)+(+3)时,先取______号,这是因为两个加数中,______的绝对值较大.然后再用较大的绝对值____减去较小的绝对值____,得_____,于是最后得到答案是______.计算的过程可以写成(-8)+(+3) = -(8-3) = -5.

〖议一议

有人说,正数和负数相加时,实质就是把加法运算转化为小学的减法运算.他说的对不对?

〖练习

1.第一场比赛红队胜黄队5:2,第二场比赛黄队胜蓝队3:1, 两场比赛黄队净胜几个球?

2.如果物体先向右运动5米,再向右运动-8米,那么两次运动后总的结果是什么?

3. 检查3包洗衣粉的重量(单位:克), 把其中超过标准重量的数量记为正数,不足的数量记作负数,结果如下:

-3.5,+1.2,-2.7.

这3包洗衣粉的重量一共超过标准重量多少?

4.仿照(-8)+(+3) =-(8-3) = -5的格式解题:

(1)(-3)+(+8)=

(2)-5+(+4)=

(3)(-100)+(+30)=

(4)(-100)+(+109)=

〖法则理解

有理数加法法则第2条的后半部分是:互为相反数的两个数相加得_____.

例如(+3)+(-3) = ______,(-108)+(+108) = ______.

〖例题学习

p21.例1,例2

p22.练习2(按例1格式算.)

〖作业

p29.习题 1, p32.习题 8,9,10

【备选素材】

用一个□表示+1,用一个■表示-1.显然□+■=0,

(1)■■+□□□=(■+□)+(■+□)+ □=_____.

这表明-2+3=+(3-2)=1.

想一想:答案为什么是正的?为什么转化为减法运算?

(2)计算■■■■■+□□□□□=_____.

(3)计算■■■■■+□□=(■■+□□)+ ■■■=______.

这说明-5+(+2)=-(___-___)=_______.

(4)计算■■■+□□□□□=?

有理数的加法的教案篇6

一.教学目标

1.知识与技能

(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;

(2)在有理数加法法则的教学过程中,注意培养学生的运算能力.

2.过程与方法

通过观察,比较,归纳等得出有理数加法法则。能运用有理数加法法则解决实际问题。

3.情感态度与价值观

认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

二、教学重难点及关键:

重点:会用有理数加法法则进行运算.

难点:异号两数相加的法则.

关键:通过实例引入,循序渐进,加强法则的应用.

三、教学方法

发现法、归纳法、与师生轰动紧密结合.

四、教材分析

“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。

五、教学过程

(一)问题与情境

我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为4+(-2),黄队的净胜球为1+(-1),这里用到正数与负数的加法。

(二)师生共同探究有理数加法法则

前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:

足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:

(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是

(+3)+(+1)=+4.

(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是

(-2)+(-1)=-3.

现在,请同学们说出其他可能的情形.

答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是

(+3)+(-2)=+1;

上半场输了3球,下半场赢了2球,全场输了1球,也就是

(-3)+(+2)=-1;

上半场赢了3球下半场不输不赢,全场仍赢3球,也就是

(+3)+0=+3;

上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是

(-2)+0=-2;

上半场打平,下半场也打平,全场仍是平局,也就是

0+0=0.

上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?

这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加;

2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

3.一个数同0相加,仍得这个数.

(三)应用举例 变式练习&&t;/p>

例1 口答下列算式的结果

(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);

(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);(8)0+0.

学生逐题口答后,师生共同得出:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

例2(教科书的例1)

解:(1)(-3)+(-9) (两个加数同号,用加法法则的第1条计算)

=-(3+9) (和取负号,把绝对值相加)

=-12.

(2)(-4.7)+3.9 (两个加数异号,用加法法则的第2条计算)

=-(4.7-3.9) (和取负号,把大的绝对值减去小的绝对值)

=-0.8

例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数

下面请同学们计算下列各题以及教科书第23页练习第1与第2题

(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。

(四)小结

1.本节课你学到了什么?

2.本节课你有什么感受?(由学生自己小结)

(五)作业设计

1.计算:

(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);(4)(+6)+(+9);

(5)67+(-73);(6)(-84)+(-59);(7)-33+48;(8)(-56)+37.

2.计算:

(1)(-0.9)+(-2.7); (2)3.8+(-8.4);(3)(-0.5)+3;(4)3.29+1.78;

(5)7+(-3.04);(6)(-2.9)+(-0.31)(7)(-9.18)+6.18; (8)(-0.78)+0.

3.用“>”或“<”号填空:

(1)如果a>0,b>0,那么a+b ______0;

(2)如果a<0,b<0,那么a+b ______0;

(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

(4)如果a<0,b>0,|a|>|b|,那么a+b ______0

(六)板书设计

1.3.1有理数加法

一、加法法则二、例1例2例3

有理数的加法的教案6篇相关文章:

20以内直加法教案优秀6篇

7以内加法教案7篇

加法优秀教案7篇

20以内直加法教案5篇

7以内加法教案精选7篇

树的关于中班的教案6篇

植物的茎的教案最新6篇

大班教案我的老师教案6篇

秋天的树叶教案美术中班教案6篇

9的分解组成教案大班教案6篇

有理数的加法的教案6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
114235